Métodos de preparação de lipossomamas

ELAISE GONÇALVES PIERRI¹, MARIA PALMIRA DAFLON GREMIÃO²
1. Mestranda do Programa de Pós-graduação em Ciências Farmacêuticas da Faculdade de Ciências Farmacêuticas – UNESP.
2. Professor Assistente Doutor do Departamento de Fármacos e Medicamentos, Faculdade de Ciências Farmacêuticas-UNESP.
Rodovia Araraquara-Jaú Km 01 - 14801-902 – Araraquara, SP, Brasil.

INTRODUÇÃO

Lipossomamas são estruturas em forma de vesículas microscópicas, formadas basicamente por fosfolipídeos organizados em bicamadas concêntricas que circundam compartimentos aquosos (Figura 1). Foram usados inicialmente como modelos de membrana biológica. A partir da década de 70, a utilização de sistemas como lipossomamas tem sido amplamente estudada como veiculadores de fármacos, com o objetivo de aumentar a eficiência destes.

Figura 1 - Estrutura de lipossoma unilamelar

As bicamadas lipídicas dos lipossomamas têm estrutura similar àquelas encontradas nas membranas de células vivas, sugerindo a analogia entre as bicamadas lipídicas dos lipossomamas (Figura 2).

Devido às propriedades anfifílicas, os lipossomamas podem incorporar substâncias ao compartimento aquoso, na bicamada ou ainda partitionar entre esses dois compartimentos (Figura 3).
O propósito da utilização dos lipossomas é aumentar o aporte de fármacos às células ou tecidos específicos, consequentemente, aumentando a potência e/ou reduzindo a toxicidade do agente encapsulado.

Os lipossomas são formados espontaneamente, quando lipídios anfipáticos são dispersos em água. Os fosfolipídios, quando em contato com excesso de água, se agregam para formar bicamadas, que se fecham sobre si mesmas, formando estruturas esféricas onde uma ou várias bicamadas fosfolipídicas englobam parte do solvente no seu interior. As moléculas lipídicas se organizam, expondo sua cabeça polar em direção à fase aquosa, enquanto que as porções hidrocarbonadas apolares dispõem-se juntas na bicamada, formando uma película lipídica, concêntrica, separada pelos compartimentos aquosos.

Todos os fosfolipídios têm uma Tm (Temperatura de transição de fase) característica, a qual depende da natureza do grupo polar, além do comprimento e grau de insaturação das cadeias hidrocarbonadas. Acima da Tm, os fosfolipídios estão na fase líquida-cristalina, caracterizada por uma maior mobilidade das cadeias. Abaixo da Tm ocorre a transição para um estado mais rígido (gel), resultando numa restrição da mobilidade. A formação de lipossomas estáveis, a partir de fosfolipídios, só é possível a temperaturas acima da temperatura de transição de fase (gelo-líquido cristalino) (Tm).

CLASSIFICAÇÃO

I) Quanto ao tamanho e número de bicamadas:
- Lipossomas Multilamelares (MLV): formados pela hidratação de fosfolipídios secos em excesso de água, originam várias bicamadas concêntricas, intercaladas por compartimentos aquosos. Seu diâmetro varia, de acordo com o número de lâminas, podendo ir de 400 a 3.500 nm (capacidade de encapsulação de até 4,1 μl/μmol de lipídeo).
- Lipossomas Unilamelares Pequenos (SUV): Entre outros métodos, podem ser formados pela ultra-sonicação de dispersões de fosfolipídios em água constituídos por apenas uma bicamada e um pequeno compartimento aquoso. Seu diâmetro varia de 20 a 50 nm (capacidade de encapsulação de apenas 0,5 μl/μmol de lipídeo).
- Lipossomas Unilamelares Grandes (LUV): Podem ser produzidos por evaporação de fase reversa, constituídos por apenas uma bicamada, mas com grande cavidade aquosa. Seu diâmetro varia de 200 a 1.000 nm (capacidade de encapsulação chega a 13,7 μl/μmol de lipídeo).

Os fármacos podem alterar significativamente as propriedades dos lipossomas, de maneira que sua composição necessita ser otimizada para cada fármaco e indicação.

II) Com relação às características de interação com sistemas biológicos:
- Lipossomas Convencionais (reatividade inespecífica)
- Lipossomas “Stealth” (inertes ou estabilizados estericamente)
- Lipossomas Direcionados ou “Target Liposome” (com reatividade específica devido a presença de compostos que vão direcionar os lipossomas para um sítio específico)
- Lipossomas Polimórficos (reativos devido a mudança na sua estrutura) Ex: lipossomas sensíveis ao pH, lipossomas catiônicos.

CONSTITUÍNTES ESTRUTURAIS

Os lipossomas podem ser formados, a partir de vários fosfolipídios: fosfatidicolina, fosfatidilglicerol, fosfatidilserina, etc. O mais usado é a fosfatidicolina, pura ou em combinação com colesterol.

FOSFOLIPÍDIOS: consiste de uma cadeia principal de glicerol, os glicerofosfolipídios, com suas funções álcool esterificadas pelos ácidos graxos que formam a porção hidrofóbica da molécula. A outra extremidade comporta um grupo polar, que constitui a “cabeça polar” do lipídeo (geralmente um fosfato, no caso de fosfolipídeo). Os ácidos graxos são principalmente aqueles com 16 ou 18 carbonos, e podem possuir uma ou mais insaturações, não conjugadas. A fosfatidicolina (Figura 5) é a mais comumente utilizada conhecida também como lecitina de soja ou de ovo.

![Figura 4 - Representação esquemática dos tipos de lipossomas.](image)

ESTERÓIDES: são lipídios estruturais presentes nas membranas da maioria das células. Abundante nos tecidos animais, localizando-se primariamente nas membranas celulares. Lipossomas sem colesterol interagem rapidamente com as proteínas plasmáticas (albumina, transferrina), que tendem a extrair os fosfolipídios estruturais dos lipossomas, depleitando a monocamada externa das vesículas, levando a uma instabilidade física.

Inferna, v.11, n.º 9/10, 1999
da preparação. Sua inclusão na parede dos lipossomais exercem 3 efeitos:
- diminui a fluidez e aumenta a microviscosidade da bi-camada
- diminui a permeabilidade da membrana a moléculas hidrossolúveis
- estabiliza a membrana na presença de fluidos biológicos, como o plasma

Todos os métodos empregados na preparação dos lipossomais envolvem algumas etapas comuns (Figura 6):
1. Dissolução dos lípidos em um solvente orgânico;
2. Evaporação do solvente orgânico;
3. Dispersão dos lípidos secos em uma solução aquosa;
4. Dissolução da substância a encapsular na solução orgânica ou na solução aquosa, em função do seu equilíbrio hidrófilo/lipófilo;
5. Eliminação das substâncias não encapsuladas através de técnicas de separação (filtração em gel, diálise, centrifugação);

Figura 6 - Etapas comuns a todos os métodos de preparação de lipossomais.

Os vários métodos de preparação de lipossomais diferem entre si geralmente pelo modo de dispersão dos fosfolipídios na fase aquosa. Para uma melhor comparação entre os métodos de preparação, é importante descrever algumas das características principais na preparação de vesículas. As características que mais refletem as variações decorrentes dos diferentes métodos são aquelas envolvendo a encapsulação das substâncias pelas vesículas. A eficácia de encapsulação pode ser expressa de várias maneiras:
- A percentagem ou taxa de encapsulação corresponde a proporção de soluto associada aos lipossomais em relação à quantidade inicialmente encontrada no meio;
- A massa de substância encapsulada pela unidade de massa de lipídeo corresponde à quantidade de soluto encapsulado (µg/mol ou µg/mg);
- O volume aquoso encapsulado corresponde ao volume ou a massa de fase aquosa encapsulada por unidade de massa de lipídeo (µl/µmol).

MÉTODOS DE OBTEÇÃO

Os métodos de preparação de lipossomais são numerosos e levam à formação de vários tipos de vesículas que diferem entre si pelo tamanho, estrutura e capacidade de encapsulação. De acordo com o método, é possível obter vesículas multi ou unilaminares. Lasic ressalta a influência da energia sobre a formação dos vários tipos de vesículas. Por exemplo, as MLV formam-se espontaneamente, quando o filme fosfolipídico é hidratado em excesso de água ou tampão. Já as LUV e SUV, possuem maior energia livre e, portanto, deve haver a dissipação de alguma forma de energia no sistema para sua obtenção.

Requisitos básicos para um método de preparação ideal de lipossomais:
- simples
- padronizado
- reproducível
- com boa relação custo/eficácia
- o produto obtido deve ser estável e homogêneo por um período de tempo suficiente
- capaz de produzir lipossomais homogêneos em pequena e larga escala
- o tamanho dos lipossomais deve ser controlável

1) DISPERSAO MECÂNICA

1.1) Hidratação de filme lipídico

Uma solução aquosa é adicionada a um filme de fosfolipídios obtidos pela evaporação de um solvente orgânico onde os fosfolipídios estavam solubilizados. A dispersão é facilitada pela utilização de um vórtex e/ou pela introdução de pérolas de vidro no balão. O filme fosfolipídico, em contato com a solução aquosa, engolfa parte dela, até que se desloca das paredes do balão para formar espontaneamente as vesículas.

O diâmetro das vesículas obtidas é bastante elevado, da ordem de alguns micrômetros, e a distribuição de tamanho é muito heterogênea. Dependendo da energia empregada (agitação leve, vórtex, natureza do fosfolipídeo, força íônica, natureza dos íons, concentração, pureza), formam-se MLV de diferentes distribuições de tamanhos.

No caso de uma leve agitação, o diâmetro, a lamelaridade, e distribuição de tamanho dos lipossomais variam dentro de uma ampla faixa (0,1 a várias dezenas de µm). Uma distribuição de tamanho relativamente bem definida (1 - 4µm) pode ser obtida se a energia adicionada ao sistema (vórtex por 10 min) assim como, a composição e a concentração forem rigorosamente controladas.

O volume aquoso encapsulado varia entre 0,5 e 4,1 µl/µmol de fosfolipídeo. As taxas de encapsulação obtidas por este método variam de 2 a 15%. Segundo Maierhofer, 1988, o índice de encapsulação das vesículas obtidas por este método é mais elevado quanto mais lentamente foi realizada a hidratação. A adição de fosfolipídios carregados origina um aumento na distância entre as bicamadas lipídicas, reduzindo a tendência à agregação das MLV após sua formação.

Figura 7 - Hidratação do filme lipídico seco
1.2) Sonicação

Com a finalidade de reduzir o diâmetro dos lipossommas MLV obtidos por hidratação do filme lipídico, a dispersão de lipossomas pode ser submetida à ação de ultra-som. A sonicação de dispersions de fosfolipídios resulta em preparações com baixa turbidez, as quais consistem de microvesículas de bicamadas lipídicas circundando compartimentos aquosos. Por este método, introduzido por Saunders (1962), obtém-se lipossomas SUV de diâmetros que variam de 20 a 50 nm.

O processo de irradiação de ultra-som pode ser feito por sonicadores de banho ou por sonda (Figura 8). Este último é mais eficiente que o de banho para reduzir o tamanho dos lipossomas. Entretanto, os aparelhos do tipo TIP, que possuem sondas metálicas de titânio de onde partem as ondas de ultra-som, podem liberar resíduos do metal, promovendo a degradação do lipídeo estrutural da vesícula.

Os sonicadores de banho evitam este problema, mas os detalhes experimentais requerem maior atenção, como o tempo de sonicação, a forma do recipiente usado para conter os lipídeos, volume da solução e a posição do recipiente no banho para obter vesículas com menor diâmetro possíveis e reprodutíveis.

Na preparação de SUV por esta técnica, é essencial que a sonicação seja efectuada numa temperatura inferior à T_c do lipídeo, de mais alto ponto de fusão na mistura e que as vesículas permaneçam acima da T_c por pelo menos 30 min. para formar uma preparação estável. Abaixo da T_c, formam-se estruturas semelhantes a agregados de SUV com defeitos na bicamada.

O alto raio de curvatura destas vesículas proporciona uma maior percentagem de fosfolipídios na monocamada externa (60-70%) comparado a monocamada interna, levando a uma distribuição assimétrica dos componentes lipídicos nas bicamadas quando são utilizadas misturas.

Em relação ao volume de encapsulação no espaço aquoso, as SUV são limitadas com valores na faixa de 0,2 a 1,5 μl/μmol de lipídeo, variando com a composição lipídica da vesícula e o tempo de sonicação. Apresenta taxa de encapsulação baixa entre 0,1 e 1%. A inclusão de colesterol aumenta o volume de captura. O pequeno espaço aquoso limita o tamanho das macromoléculas que podem ser encapsuladas (até 40.000 daltons).

a) “French pressure cell”

Neste processo uma pressão da ordem de 20.000 psi (libras/pol²) é exercida sobre um pistão que penetra em um reservatório cilíndrico através de um orifício (Figura 9). A fragmentação dos lipossomas ocorre devido a forças de cisalhamento que atuam sobre as membranas das MLV. Após 4 a 5 passagens, 95% das vesículas são SUV, com diâmetro variando de 30 a 50 nm. Os volumes encapsulados são pequenos, mas a possibilidade de utilizar altas concentrações de lipídeos permite obter uma taxa de encapsulação da ordem de 5 a 25%. É um método simples e reprodutível, não havendo limitações quanto ao volume a utilizar permitindo o emprego para escala industrial.

b) Extrusão de membrana

Esse método consiste em calibrar o tamanho dos lipossomas forçando-os a passar através de uma membrana de polycarbonato, cujo diâmetro dos orifícios é bem definido (Figura 10).

Os lipossomas são filtrados em membranas com poros decrescentes (1/0,8/0,6/0,4/0,2 μm), e são do tipo MLV com diâmetro médio de 0,27 μm. O volume aquoso encapsulado está entre 1 e 3 μl/μmol de lipídeos e taxa de encapsulação de 5 a 30%.

Figura 9 - “French Pressure Cell”

Figura 10 - Extrusão por membrana de policarbonato.

1.4) Microfluidização

Essa técnica usa a força de duas correntes de dispersões de lipossomas que colidem entre si sob alta pressão, reduzindo o tamanho das vesículas, permitindo homogeneizar dispersões de lipossomas MLV (Figura 11).

No microfluidizador, a dispersão de vesículas passa, por intermédio de uma bomba, sob forte pressão (10.000 psi), através de
um filtro com poros de 5 μm de diâmetro, chegando a uma câmera de interação. O fluido é separado em dois canais que se reencontram no alto da câmara, a uma velocidade superior a 500 m/s.

A colisão de vesículas que se produz é acompanhada por uma transferência de energia elevada. O choque das partículas entre si provoca a ruptura das vesículas grandes que se reorganizam em vesículas pequenas e de tamanho homogêneo. Desta maneira, após cerca de duas passagens, os lipossomas obtidos são SUV, com diâmetro inferior a 0,1 μm. Esse método permite produzir grandes quantidades de lipossomas na presença de concentrações elevadas de fosfolipídeos (20%). A taxa de encapsulação chega a 70%.

Figura 11 – Microfluidização

1.5) Desidratação-reidratação

Consiste em dispersar, numa solução aquosa, os lipossomas previamente liofilizados. Compreende várias etapas:

• prepara-se lipossomas por uma das técnicas descritas anteriormente;
• a solução aquosa contendo o soluto a encapsular é adicionada aos lipossomas e liofilizados;
• após reconstituição em solução aquosa, são obtidos lipossomas com diâmetro inferior a 1 μm e com 40% de encapsulação;

As vesículas sonicadas são misturadas a uma solução aquosa contendo o soluto que se deseja encapsular, e a mistura é sec a sob corrente de N₂ (ou liofilizada). Com a desidratação da amostra, as vesículas pequenas fundem-se para formar um filme multilamelar que intercala as moléculas do soluto entre sucessivas camadas. Na reidratação, são formadas vesículas maiores, as quais encapsularam uma porção significativa do soluto (Figura 12).

Figura 12 - Desidratação-Reidratação

1.6) Congelamento-descongelamento

Nesta preparação, os lipossomas SUV e o soluto a encapsular são congelados em nitrogênio líquido e depois deixados à temperatura ambiente, por 15 min. E, então, sonificados. Formam-se LUV, com um volume de encapsulação de 10 μl/μmol de lipídios, e taxa de encapsulação de 30%. Por esta técnica, é praticamente impossível preparar lipossomas com fosfatioliscolina pura, pois a presença de uma carga é fundamental. Crioprotetores como sacarose ou câtions divalentes ou soluções de elevada força iônica inibe o processo de fusão das vesículas que pode ocorrer.

Este método leva à obtenção de uma preparação heterogênea de vesículas, a maioria unilamelares, com tamanho que varia de 50 a 500 nm. A formação de lipossomas maiores resulta da fusão das pequenas vesículas, durante o congelamento e/ ou descongelamento da dispersão de SUV.

1.7) Vesiculação induzida por ajuste de pH

Pode-se induzir a reorganização de MLV em vesículas unilamelares, sem a necessidade de sonicação ou alta pressão, simplesmente alterando o pH. Este processo denominado vesiculação induzida por pH é um fenômeno elettrostático. A alteração de pH provoca um aumento nas cargas superficiais da bicamada lipídica, causando uma vesiculação espontânea.

1.8) Fusão induzida por cálcio

Procedimento baseado na observação de que a adição do cálcio a SUVs apropriadas induz a fusão e resulta na formação de grandes estruturas cilíndricas, multilamelares em uma configuração espiral (cilindros de coqueletes). A adição de ácido etilendiaminotetraetéctico (EDTA) a estas preparações produz grandes vesículas esféricas unilamelares. Uma variedade de fosfolipídeos ácidos pode ser usada nesta preparação, incluindo o ácido fosfaticílico, o fosfatidilglicerol e a fosfatidilserina, com ou sem colesterol.

A preparação de LUVs começa com SUVs pré-formadas, que são então misturadas por diálise com uma solução contendo cálcio, ou recebem diretamente a adição de cloro de cálcio. Nos dois casos, as SUVs se fundem em estruturas coqueletadas, formando um precipitado branco flocculante, a qual pode ser removida e coletada por centrifugação. Este precipitado é ressuspendido em um volume mínimo de solução contendo o material a encapsular, e então adiciona-se uma solução 0,1M de EDTA até que a suspensão se torne clara, como resultado do rearranjo dos cilindros em LUV.

A maior vantagem desse método é a habilidade de encapsular macromoléculas sob condições excepcionalmente brandas. As vesículas são em sua maioria unilamelares, com grande distribuição de tamanho. A desvantagem é que requer fosfolipídeos de caráter ácido ou misturas, contendo uma predominância deles.

2) DISPERSÃO SOLVENTE

2.1) Injeção de etanol

A injeção de uma solução etânolica de fosfolipídeos em uma solução aquosa leva à formação espontânea de lipossomas unilamelares de tamanho reduzido (Figura 13). Os lipídios secos são dissolvidos em etanol e injetados, por meio de uma seringa de vidro ou bomba peristáltica, em uma solução aquosa sob agitação. O diâmetro dos lipossomas depende da volume de injeção, da velocidade de agitação e da concentração de fosfolipídeos no etanol. Uma injeção rápida permite obter vesículas
com diâmetro médio de 27 nm, enquanto que uma injeção lenta leva a formação de vesículas com diâmetro superior a 120 nm.

A concentração final de etanol não pode exceder de 10% em volume, neste caso as SUV não se formam. O etanol residual é de difícil remoção, pois forma uma mistura azeotrópica com a água.

2.2) Infusão de Éter

Neste método os fosfolipídios são dissolvidos em éter ou uma mistura éter/metanol (Figura 14). A solução é então injetada por meio de uma seringa, a uma velocidade de 0,2 ml/min, numa solução aquosa aquecida a 55-65°C (acima do ponto de ebulição do éter) ou a 30°C sob pressão reduzida. A concentração de lipídeos empregada é de 2 mg/ml, e 2 ml desta solução são injetados a 4 ml de solução aquosa. A eliminação do éter por evaporação leva a obtenção de lipossomos unilamelares cujo diâmetro varia entre 150 e 200 nm.

2.3) Evaporação de fase reversa

Este método desenvolvido por Szoka e Papahadjopoulos, permite preparar lipossomos LUV com um grande compartimento aquoso. Os fosfolipídios são dissolvidos em solvente organânico, como éter etílico, propílico ou uma mistura de solven-

tes (éter propílico/clorofórmio 1:1, V/V), ou ainda em fluorcarbonetos abaixo do ponto de fusão. A fase aquosa (tampão) é adicionada a fase orgânica a uma razão de 1/3 (fase aquosa/fase orgânica) se o solvente for o éter etílico, ou de 1/6 no caso da mistura éter propílico/clorofórmio.

Neste momento, os fosfolipídios se dirigem para a interface das duas fases imiscíveis. Após 5 min de sonicação, forma-se uma emulsão A/O, na qual os fosfolipídios se organizam na forma de micelas inversas, circundando os compartimentos aquosos. A eliminação do solvente por evaporação sob pressão reduzida (200-400 mmHg) leva à aproximação dessas micelas inversas, seguida da formação de um gel.

Ao longo dessa etapa, as micelas reversas, formadas por monocamadas de fosfolipídios circundando compartimentos aquosos, agregam-se para formar uma estrutura gelificada compacta. Na etapa seguinte, a pressão é reduzida ainda mais a fim de favorecer a evaporação total do éter. No momento da ruptura da fase gel, as monocamadas se aproximam para formar as bicamadas dos lipossomos. O éter é eliminado por evaporação total do solvente.

As vesículas obtidas são unilamelares, com diâmetro médio de 0,5 μm. Uma capsulação máxima (65%) da fase aquosa é obtida em presença de uma solução de fraca força iônica (0,01M NaCl).

Após obter uma dispersão homogênea, é recomendável remover os traços finais do solvente, por dialise ou cromatografia, em coluna de exclusão. Isto eliminará a tendência das vesículas recentemente preparadas de se agregarem.

2.4) Remoção de detergente

Os fosfolipídios são solubilizados em meio aquoso, através da adição de um detergente, formam-se as micelas mistas e, em seguida, o detergente é eliminado, deixando as micelas ricas em fosfolipídios, as quais coalescem para formar vesículas unilamelares do tipo SUV ou LUV. As vesículas resultantes contêm menos que 1 molécula de detergente/1.000 moléculas de fosfolípides.

3) OUTROS MÉTODOS

Kaneko e SagiJani (1992) desenvolveram um método para a preparação de lipossomos fundamentado na “fase lamelar líquido-cristalina” que se forma numa mistura de lecitina de ovo, propilenoglicol, glicerol e água. A adição de água a esta fase
lamelar levou a obtenção de lipossomas de cerca de 116 nm e com uma eficiência de encapsulação de 19,5%.

BRANDL et al (1990) preparam lipossomas, empregando um aparelho homogeneizador de escala laboratorial. De forma semelhante à microfluidização, este aparelho produz uma hidratação forçada da lecitina e uma subsequente formação de lipossomas, através da expansão de dispersões lipídicas sob alta pressão.

BACHMANN et al (1993), segundo o mesmo princípio, descreveram a preparação de lipossomas através de outro homogeneizador constituído por uma bomba peristáltica que alimenta o material para dentro de uma bomba resfriada com água, a qual contém dois pistões a alta pressão. Um único ciclo mostrou-se capaz de transformar uma dispersão bruta de vesículas em uma dispersão homogênea, opalescente e levemente turbuda. Sucessivas recirculações levaram à redução de tamanho das vesículas até os limites desejados.

CARACTERÍSTICAS DOS PRINCIPAIS MÉTODOS DE PREPARAÇÃO DOS LIPOSOMAS

As características dos principais métodos de preparação dos lipossomas estão resumidos na tabela I. De acordo com esta tabela, vários critérios devem ser considerados para a formulação de lipossomas. Sua composição, estrutura (uni ou multilamelas) e tamanho são determinados em função de critérios de estabilidade e de suas aplicações. O volume de encapsulação deve ser elevado caso se pretenda encapsular macromoléculas. Além do que, o método de preparação não deve ser agressivo à substância a encapsular. Por outro lado, a característica da vesícula obtida depende da técnica utilizada, e disso depende sua aplicabilidade em terapêutica.

BIBLIOGRAFIA

TABELA I – Principais características dos métodos de preparamção dos lipossomas.

<table>
<thead>
<tr>
<th>MÉTODO DE PREPARAÇÃO</th>
<th>ESTRUTURA</th>
<th>DIÂMETRO (nm)</th>
<th>VOLUME DE ENCAPSULAÇÃO (milímetros líquidos)</th>
<th>EFICIÊNCIA DE ENCAPSULAÇÃO (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hidratação de filme</td>
<td>MLV</td>
<td>1,0</td>
<td>1,4-1,8</td>
<td>9-27</td>
</tr>
<tr>
<td>Sonicação de MLV</td>
<td>SUV</td>
<td>0,02-0,05</td>
<td>0,2-1,5</td>
<td>0,1-1,0</td>
</tr>
<tr>
<td>“French Pressure Cell”</td>
<td>SUV</td>
<td>0,02-0,05</td>
<td>0,2-1,5</td>
<td>5-25</td>
</tr>
<tr>
<td>Extrusão de MLV por membrana de poli(carbonato)</td>
<td>SUV</td>
<td>0,06-1,0</td>
<td>1-3</td>
<td>5-30</td>
</tr>
<tr>
<td>0,2 a 1 µm</td>
<td>MLV</td>
<td>0,05-2,0</td>
<td>1,8-3,7</td>
<td>15-40</td>
</tr>
<tr>
<td>Microfluidização</td>
<td>SUV</td>
<td><0,1</td>
<td>0,7-1,0</td>
<td>5-78</td>
</tr>
<tr>
<td>Injeção de Etanol</td>
<td>SUV</td>
<td>0,03</td>
<td></td>
<td>0,5</td>
</tr>
<tr>
<td>VER</td>
<td>LUV</td>
<td>0,1-1,0</td>
<td>11-17</td>
<td>30-68</td>
</tr>
<tr>
<td>Iodo de Etér</td>
<td>LUV</td>
<td>0,05-0,23</td>
<td>13-25</td>
<td>2,0</td>
</tr>
<tr>
<td>Congelamento / Descongelamento (SUV)</td>
<td>LUV</td>
<td>0,09</td>
<td></td>
<td>25-30</td>
</tr>
<tr>
<td>Congelamento / Descongelamento (MLV)</td>
<td>MLV</td>
<td>2,5</td>
<td></td>
<td>31-89</td>
</tr>
<tr>
<td>Fusão Induzida por Ca</td>
<td>LUV</td>
<td>0,2-1,0</td>
<td>1-7</td>
<td>10-15</td>
</tr>
<tr>
<td>Eliminação de Detergente</td>
<td>SUV</td>
<td>0,1</td>
<td>2,4</td>
<td>12</td>
</tr>
<tr>
<td>Detergente</td>
<td>LUV</td>
<td>0,037</td>
<td>0,47</td>
<td>12</td>
</tr>
<tr>
<td>Desencapsulização / Reconstituição</td>
<td>MLV</td>
<td>0,02-2,0</td>
<td></td>
<td>28-72</td>
</tr>
</tbody>
</table>

Ainda hoje, a obtenção industrial de lipossomas está sendo desenvolvida. Métodos ideais para produção de lipossomas em larga escala, que originem lotes consideráveis ou uma preparação contínua, assim como a uniformidade do produto e a reprodutibilidade do processo estão ainda em estudo e discussão.